Complexity bounds for Markov chain Monte Carlo algorithms via diffusion limits

نویسندگان

  • Gareth O. Roberts
  • Jeffrey S. Rosenthal
چکیده

We connect known results about diffusion limits of Markov chain Monte Carlo (MCMC) algorithms to the computer science notion of algorithm complexity. Ourmain result states that any weak limit of a Markov process implies a corresponding complexity bound (in an appropriate metric). We then combine this result with previously-known MCMC diffusion limit results to prove that under appropriate assumptions, the random-walk Metropolis algorithm in d dimensions takes O(d) iterations to converge to stationarity, while the Metropolis-adjusted Langevin algorithm takes O(d1/3) iterations to converge to stationarity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity Bounds for MCMC via Diffusion Limits

We connect known results about diffusion limits of Markov chain Monte Carlo (MCMC) algorithms to the Computer Science notion of algorithm complexity. Our main result states that any diffusion limit of a Markov process implies a corresponding complexity bound (in an appropriate metric). We then combine this result with previously-known MCMC diffusion limit results to prove that under appropriate...

متن کامل

Inference and Filtering for Partially Observed Diffusion Processes via Sequential Monte Carlo

Diffusion processes observed partially or discretely, possibly with observation error, arise when constructing stochastic models in continuous time. The method of Sequential Monte Carlo provides an alternative to Markov Chain Monte Carlo methods, and can be effective in complex models at the cutting edge of scientific research. This paper introduces Sequential Monte Carlo approaches to inferenc...

متن کامل

Quantitative bounds for convergence rates of continuous time Markov processes

We develop quantitative bounds on rates of convergence for continuoustime Markov processes on general state spaces. Our methods involve coupling and shiftcoupling, and make use of minorization and drift conditions. In particular, we use auxiliary coupling to establish the existence of small (or pseudo-small) sets. We apply our method to some diffusion examples. We are motivated by interest in t...

متن کامل

Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions

In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled...

متن کامل

A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models

This paper describes a Bayesian approach to determining the number of hidden states in a hidden Markov model (HMM) via reversible jump Markov chain Monte Carlo (MCMC) methods. Acceptance rates for these algorithms can be quite low, resulting in slow exploration of the posterior distribution. We consider a variety of reversible jump strategies which allow inferences to be made in discretely obse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Probability

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2016